Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Gopal, R. & Calvo, C. (1972). J. Solid State Chem. 5, 432-435.
- Harrison, W. T. A., Dussack, L. L. & Jacobson, A. J. (1994). Inorg. Chem. 33, 6043–6049.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
- Vandenborre, M., Sanchez, C. & Politi, A. (1985). Nouv. J. Chem. 9, 511-518.
- Vaughey, J. T., Harrison, W. T. A., Dussack, L. L. & Jacobson, A. J. (1994). Inorg. Chem. 33, 4370–4375.
- Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1990). CRYSTALS User Guide. Chemical Crystallography Laboratory, Univ. of Oxford, England.

pyroxene differs from that of the NaGa(β)Si₂O₆ pyroxene.

The O1—Si—O2 angle is the largest O—Si—O angle in the Na M^{3+} Si₂O₆ pyroxenes. This may be due in part to the greater repulsion between the more negatively charged non-bridging O atoms. As shown in Fig. 2, the O1—Si—O2 angles correlate with the differences d_{br-nbr} in such a way that they follow three different trends: the Sc-Ti–V–Cr series, the Mn– Fe–Ga(α) series and the Al–Ga(β)–In series, where $d_{br-nbr} = \langle Si-O_{br} \rangle - \langle Si-O_{nbr} \rangle$ (br = bridging, nbr = non-bridging), $\langle Si-O_{br} \rangle = 1/2(Si-O3A1 + Si-O3A2)$

Acta Cryst. (1995). C51, 2476–2477

Low-Density Form of NaGaSi₂O₆

HARUO OHASHI, TOSHIKAZU OSAWA AND AKIRA SATO

National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba, Ibarki 305, Japan

(Received 12 December 1994; accepted 13 June 1995)

Abstract

The structure of the title compound, gallium sodium silicate, is similar to that of jadeite (NaAlSi₂O₆). Comparison of the new crystal-structure refinement for NaGaSi₂O₆ with published refinements for eleven Na M^{3+} Si₂O₆ pyroxenes suggests that there are two different electronic states, Ga(α) and Ga(β), for the octahedral Ga³⁺ ion. Ga(α) occurs in the Mn–Fe–Ga(α) series and Ga(β) in the Al–Ga(β)–In series.

Comment

The structure of the title compound is isostructural with NaAlSi₂O₆, NaCrSi₂O₆ and NaFeSi₂O₆ (Clark, Appleman & Papike, 1969), NaScSi₂O₆ (Hawthorne & Grundy, 1973), NaInSi₂O₆ (Hawthorne & Grundy, 1974), NaTiSi₂O₆ (Ohashi, Fujita & Osawa, 1982), NaGa(α)Si₂O₆ (Ohashi, Fujita & Osawa, 1983) NaMnSi₂O₆ (Ohashi, Osawa & Tsukimura, 1987) and NaVSi₂O₆ (Ohashi, Osawa & Sato, 1994).

The cell parameters of the NaGa(α)Si₂O₆ pyroxene are: a = 9.557(5), b = 8.679(4), c = 5.260(1) Å, $\beta = 107.68(2)^{\circ}$ and V = 415.7(3) Å³ (Ohashi *et al.*, 1983). The calculated density (D_x) is 3.91 Mg m⁻³ and is higher than that ($D_x = 3.89$ Mg m⁻³) of the NaGa(β)Si₂O₆ pyroxene studied here. The atomic z coordinate for O1 [z = 0.1312(7)] of the NaGa(α)Si₂O₆

Fig. 1. Projection of the structure of NaGaSi₂O₆ onto the (100) plane. Atom labelling follows that used by Clark *et al.* (1969).

Fig. 2. The variation of the O1—Si—O2 angle (°) with d_{br-nbr} (Å) for the Na M^{3+} Si₂O₆ pyroxenes. Data are from Ohashi *et al.* (1994).

and $\langle Si - O_{nbr} \rangle = 1/2(Si - O1 + Si - O2)$. These trends suggest that there are two different electronic states for the octahedral Ga³⁺ ion.

Experimental

The title compound was prepared by solid-state reaction using belt-type high-pressure apparatus. A mixture of crystalline $Na_2Si_2O_5$, Ga_2O_3 and SiO_2 was sealed in a platinum capsule and maintained at 1770 K and 6 GPa for 5 h.

Crystal data

NaGaSi ₂ O ₆	Mo $K\alpha$ radiation
$M_r = 244.88$	$\lambda = 0.7107 \text{ Å}$
Monoclinic	Cell parameters from 22
C2/c	reflections
a = 9.5573(5) Å	$\theta = 13.8 - 16.3^{\circ}$
b = 8.7019(2) Å	$\mu = 7.17 \text{ mm}^{-1}$
c = 5.2705 (3) Å	T = 296 K
$\beta = 107.637(2)^{\circ}$	Prism
V = 417.73 (4) Å ³	$0.09 \times 0.04 \times 0.04$ mm
Z = 4	Colourless
$D_x = 3.89 \text{ Mg m}^{-3}$	
Data collection	
Enraf–Nonius CAD-4	$\theta_{\rm max} = 31.5^{\circ}$
diffractometer	$h = 0 \rightarrow 14$
$\omega/2\theta$ scans	$k = 0 \rightarrow 12$
Absorption correction:	$l = -7 \rightarrow 7$
by integration from crystal	3 standard reflections
shape	monitored every 100
$T_{\min} = 0.673, T_{\max} =$	reflections for orientation
0.771	and every 240 min for

728 measured reflections 728 independent reflections

649 observed reflections

 $[l > 1.5\sigma(l)]$

Refinement

Refinement on F Extinction correction: R = 0.018isotropic secondary wR = 0.029Extinction coefficient: S = 1.3 1.83×10^{-6} Atomic scattering factors 649 reflections 48 parameters from International Tables $w = 1/\sigma^2(F)$ for X-ray Crystallography $(\Delta/\sigma)_{\rm max} < 0.005$ (1974, Vol. IV) $\Delta \rho_{\rm max}$ = 0.480 e Å⁻³ $\Delta \rho_{\rm min} = -0.657 \ {\rm e} \ {\rm \AA}^{-3}$

intensity

intensity decay: none

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Ζ	U_{eq}
Na	0	0.3005 (1)	1/4	0.0125 (3)
Ga	0	0.90189 (3)	1/4	0.00471 (5)
Si	0.29116 (5)	0.09116 (5)	0.2322(1)	0.0043 (1)
01	0.1120 (2)	0.0779(1)	0.1334 (3)	0.0057 (3)
O2	0.3587 (2)	0.2588 (2)	0.3018 (3)	0.0076 (3)
O3	0.3527 (1)	0.0097 (2)	0.0076 (2)	0.0068 (3)

Table 2. Selected	geometric	parameters	(Å,	0)
-------------------	-----------	------------	-----	---	---

	0	<i>p</i>	,
Si tetrahedron		Ga octahedron	
Si—O1	1.636(1)	Ga ⁱⁱ —O1A1, B1 ⁱⁱⁱ	2.066(1)
Si—O2	1.592(1)	Ga"-O1A2', B2"	1.987(1)
Si—O3A1	1.634 (2)	$Ga^{ii} \longrightarrow O2C1^{v}, D1^{vi}$	1.917(1)
Si—O3A2 ⁱ	1.646 (1)	Mean of 6	1.990
Mean of 4	1.627		
0102	2.748 (2)	01A101B1 ⁱⁱⁱ	2.773 (2)
01· · · O3A1	2.647 (2)	$O2C1^{v_1} \cdots O2D1^{v_i}$	2.914 (2)
$O1 \cdot \cdot \cdot O3A2^i$	2.649 (2)	$O1A1 \cdot \cdot \cdot O2C1^{v} \times 2$	2.802(2)
02· · · 03A1	2.655 (2)	$O1A1 \cdots O1A2^i \times 2$	2.964 (2)
02· · · O3A2 ^t	2.584 (2)	$O1A2^i \cdots O2C1^v \times 2$	2.783 (2)
O3A1···O3A2'	2.641 (2)	$O1A2^i \cdot \cdot \cdot O2D1^{v_i} \times 2$	2.894 (2)
Si · · · Si ⁱ	3.0760 (7)	$O1A1 \cdot \cdot \cdot O1B2^{iv} \times 2$	2.565 (2)
		Ga ⁿ ····Ga ^{vii}	3.1401 (2)
01—Si—O2	116.73 (7)	$O1A1$ — Ga^{ii} — $O1B1^{iii}$	84.30(6)
01—Si—O3A1	108.11 (7)	$O1A1$ — Ga^{ii} — $O2C1^{v}$ × 2	89.32 (6)
O1—Si—O3A2 ⁱ	107.66 (7)	$O1A1$ — Ga^{ii} — $O1A2^{i}$ ×2	93.95 (5)
O2-Si-O3A1	110.76 (8)	$O1A1$ — Ga^{ii} — $O1B2^{iv}$ ×2	78.47 (5)
O2—Si—O3A2 ⁱ	105.89 (7)	$O1A2^{i}$ — Ga^{ii} — $O2C1^{v}$ ×2	90.94 (5)
O3A1—Si—O3A2 ⁱ	107.25 (7)	$O1A2^{i}$ — Ga^{ii} — $O2D1^{v_{i}} \times 2$	95.65 (5)
		$O2C1^{v}$ —Ga"— $O2D1^{vi}$	98.96 (6)
Na antiprism			
Na01A1, B1 ⁱⁱⁱ	2.382 (2)	Si—O3—Si ^{xiv}	139.40 (8)
NaO2C2 ^{viii} , D2 ^{ix}	2.395(1)	$Ga^{n} - Ol - Ga^{vn}$	01.53 (5)
Na $-03C1^{x}, D1^{xi}$	2.417 (2)	$O3^i \cdot \cdot \cdot O3 \cdot \cdot \cdot O3^{xiv}$	72.64 (8)
Na	2.777 (2)		
Mean of 8	2.493		

Symmetry codes: (i) $x, -y, \frac{1}{2} + z$; (ii) x, y - 1, z; (iii) $-x, y, \frac{1}{2} - z$; (iv) -x, -y, -z; (v) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (vi) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (vii) -x, 1 - y, -z; (viii) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$; (ix) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} - z, \frac{1}{2} + y, \frac{1}{2} - z$; (xi) $x - \frac{1}{2}, \frac{1}{2} + y, z$; (xii) $\frac{1}{2} - x, \frac{1}{2} - y, -z$; (xiii) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z$; (xiv) $x, -y, z - \frac{1}{2}$.

Data were collected using Enraf-Nonius (1989) *CAD*-4 Software. The structure determination was initiated with the atomic parameters of NaAlSi₂O₆ given by Clark *et al.* (1969). All calculations were performed with the *SDP* program system (B. A. Frenz & Associates Inc., 1982).

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: OH1083). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- B. A. Frenz & Associates Inc. (1982). SDP Structure Determination Package. College Station, Texas, USA.
- Clark, J. R., Appleman, D. E. & Papike, J. J. (1969). Mineral. Soc. Am. Spec. Pap. 2, 31-50.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Hawthorne, F. C. & Grundy, H. D. (1973). Acta Cryst. B29, 2615–2616.
- Hawthorne, F. C. & Grundy, H. D. (1974). Acta Cryst. B30, 1882– 1884.
- Ohashi, H., Fujita, T. & Osawa, T. (1982). J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. 77, 305–309.
- Ohashi, H., Fujita, T. & Osawa, T. (1983). J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. 78, 159–163.
- Ohashi, H., Osawa, T. & Sato, A. (1994). Acta Cryst. C50, 1652-1655.
- Ohashi, H., Osawa, T. & Tsukimura, K. (1987). Acta Cryst. C43, 605-607.